Abstract
The purpose of this paper is to investigate some Morse-type oscillators. In its original form, it is a model for describing the vibrations of a diatomic molecule. The Morse potential generalizes the harmonic oscillator by introducing deviations from the classical theoretical model. In the present study, we perturbed the Morse differential equation by several periodic terms based on the cosine function and by a damping term. The frequency is driven by different coefficients. The size of the deviations is controlled by another constant. We provide two modifications w.r.t. the damping term. The Melnikov approach is applied as an indicator of the possible chaotic opportunities. We also propose a novel approach for stochastic control of the perturbations. It is based on the assumption that the coefficients of the periodic terms are the probabilities of underlying distribution. As a result, the dynamics are driven by its characteristic function. Several applications are considered. We demonstrate some specialized modules for investigating the dynamics of the proposed models, along with the synthesis of radiating antenna patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.