Abstract

We have used static and dynamic light scattering and pulsed field gradient NMR to study the effect of varying concentration on the dynamics of the triblock copolymer, polystyrene block poly(ethylene, butylene) block polystyrene (PS-PEB-PS), dissolved in n-heptane, a selective solvent for the middle block. The correlation function for a dilute solution with c = 0.49 % (w/v) corresponds to the translational diffusion of micelles. At intermediate concentrations [1.1 ≤ c ≤ 2.6 % (w/v)], the correlation functions can be fitted to the sum of a single exponential and stretched exponential functions. The slower mode is due to the diffusion of polydisperse clusters formed by random association of triblock copolymer molecules and the faster one again represents micelles. A complex behavior is observed in the semidilute region [4.0 ≤ c ≤ 6.9 % (w/v)]. Three dynamic processes can be extracted from the correlation function: (i) The fast diffusive mode is the collective diffusion mode in the physical gel, (ii) the middle, relaxational mode, is probably due to the local movement of insoluble domains trapped in the network of the physical gel, and (iii) the slow diffusive mode implies the existence of large-scale inhomogeneities in the system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1312–1322, 2000

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.