Abstract

We study a diffusive time-delayed HIV/AIDS epidemic model with information and education campaigns and investigate the dynamics of classical solutions of the model. In particular, we address the questions of disease's persistence-extinction, existence of epidemic waves, and spreading speeds. When the basic reproduction number is less than or equal to one, we show that the disease-free equilibrium solution is globally stable, hence there is no epidemic wave in this case. However, if it is bigger than one, we show that the disease will eventually persist. Furthermore, there is a minimum wave speed cu⁎, which decreases as a function of time-delay u, such that the system has an epidemic traveling wave solution with speed c for every c greater than cu⁎ and that there is no such traveling wave solution of speed less than cu⁎. Moreover the minimum wave speed cu⁎ converges to 0 as the time-delay approaches infinity. We also study the disease spreading speeds interval and show that in the absence of time-delay, there is a single disease spreading speed and this coincides with the minimal wave speed. We conclude with numerical simulations to illustrate our findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.