Abstract

An understanding of soil water content dynamics is important for vegetation restoration in an arid desert-oasis ecotone under different landscapes. In this study, the dynamics of soil water content under three typical landscapes (i.e., desert, sand-binding shrubland, and farmland shelter woodland) were investigated in the Hexi Corridor, northwest China, during the growing season from 2002 to 2013. The results showed that the soil water content in the deep layers decreased from 20–30% to a stable low level of 3–5% in the desert and shrubland. For the farmland shelter woodland, the soil water content at the deep layers also decreased, but the decrease rate was much smaller than the desert and shrubland. The decrease of soil water content in the deep soil layers among desert–shrubland–woodland was strongly associated with the increase of groundwater depths. The greatest increase of groundwater depths mainly occurred during 2008–2011, while the largest decrease of soil water content took place during the years 2009–2011, with a time-lag in response to increase in groundwater depths. This study provides new insight into the long-term dynamics of soil water content in a typical desert oasis ecotone under different landscape components from the influence of overexploiting groundwater that cannot be inferred from a short-term study. The findings demonstrate that the sharp increase of groundwater depths could be the main reason behind the reduction of soil water content in the clay interlayers, and sustainable development of groundwater resources exploitation is very important for the management of desert-oasis ecotone from a long-term perspective.

Highlights

  • Soil water refers to the amount of water stored in the soil unsaturated zone and is often used as an indicator of water limitation in arid and semi-arid regions (Dobriyal et al, 2012)

  • The low soil water content anomalies at different landscapes were observed mainly around the middle and late period, which coincides well with the increased in groundwater depths (Supplementary Figure 4). These results suggest that the groundwater depths have an influence on soil water content at 160–180 cm

  • This study examined the dynamics of soil water content of three different landscapes in a typical desert-oasis ecotone of northwestern China

Read more

Summary

Introduction

Soil water refers to the amount of water stored in the soil unsaturated zone and is often used as an indicator of water limitation in arid and semi-arid regions (Dobriyal et al, 2012). Desertification around the edge of these oases is a longstanding environmental problem and is expected to continue in the future due to human activities and climate change (Wang et al, 2015). This makes reestablishment of vegetation (i.e., shrub and tree plantations) a key strategy in ecosystem restorations and provision of ecosystem services in the translated zone between desert and oasis (i.e., desert-oasis ecotone) (Li and Shao, 2013a). It is not an easy task to monitoring long-term dynamics of soil water content in a desert oasis ecotone with various soils, topography, vegetation, and land use types (Yi et al, 2014)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call