Abstract

In this paper, we introduce a class of smooth essentially strongly order-preserving semiflows and improve the limit set dichotomy for essentially strongly order-preserving semiflows. Generic convergence and stability properties of this class of smooth essentially strongly order-preserving semiflows are then developed. We also establish the generalized Krein–Rutman Theorem for a compact and eventually essentially strongly positive linear operator. By applying the main results of this paper to essentially cooperative and irreducible systems of delay differential equations, we obtain some results on generic convergence and stability, the linearized stability of an equilibrium and the existence of the most unstable manifold in these systems. The obtained results improve some corresponding ones already known.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.