Abstract

HypothesisThe quality of the printed lines in applications such as ink-jet printing and additive manufacturing is affected by the interactions between the impinging drops. Impact shape and the inhomogeneity in surface wettability govern the spreading and recoiling dynamics of the interacting drops. Hence, understanding the role of these factors on the interaction dynamics is essential to optimize these applications. Numerical experimentsPhase-field based lattice Boltzmann method solver has been employed to investigate the interaction dynamics of two simultaneously impinging drops onto a dry surface. A geometry-based contact angle scheme is used to model the moving contact line. FindingsNumerical simulations reveal that the previously identified interaction modes (Raman et al., 2017) are sensitive to the contact angle hysteresis, resulting in different impact outcomes. Two different interaction mechanisms have been discerned when drops impinge on a surface with a wettability gradient. It is shown that the deviation from the spherical geometry of the impact shape leads to different spreading behaviors and droplet morphology around the connecting region. With the increase in the cross-sectional aspect ratio, the interaction dynamics of oblate-oblate combination is similar to its spherical counterpart, albeit at a faster recoiling rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.