Abstract

The silylium ion [C(6)(SiMe(2))(SiHMe(2))(5)](+) offers an amazing example of multiple Si...H interactions. It exhibits a symmetric Si(alpha)-H-Si(alpha) motif supported by two additional Si(beta)-H...Si(alpha) agostic interactions. This cation is highly fluctional in NMR spectra at room temperature due to shift of the hydride bridge. The DFT calculations show that the hydride shift is related to internal rotation of silyl groups. We performed NMR, static DFT, and dynamics studies of this process and found two possible mechanisms, associated with internal rotation of either beta- or gamma-silyls. The energy barrier is largely caused by the silyl internal rotation, whereas the hydride transfer itself is intrinsically quite easy. The gamma-silyl rotation is somewhat more favorable than the beta-silyl rotation. Vibrational dynamics of the cation is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.