Abstract

The large-amplitude oscillatory flow of a suspension of spherical particles in a pipe is studied at low Reynolds number. Particle volume fraction and velocity are examined through refractive index matching techniques. The particles migrate toward the centre of the pipe, i.e. toward regions of lower shear rate, for bulk volume fractions larger than 10 %. Steady results are in agreement with available experimental results and discrete-particle simulations for similar geometries. The dynamics of the shear-induced migration process are analysed and compared against the predictions of the suspension balance model using realistic rheological laws.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.