Abstract

In classic cable theory, vibrations are usually analyzed by writing the equations of motion in the neighborhood of the initial equilibrium configuration. Furthermore, a fundamental difference exists between out-of-plane motions, which basically corresponds to the linear behavior of a taut string and in-plane motion, where self-weight determines a sagged initial profile. This work makes use of a continuous approach to establish the initial shape of the cable when it is subjected to wind or fluid flow arbitrarily directed and employed a novel nonlinear finite element technique in order to investigate the dynamics present around the initial equilibrium shape of the cable. Stochastic solutions in the frequency domain are derived for a wind-exposed cable after linearization of the problem. By applying the proper orthogonal decomposition (POD) technique with the aim of reducing computational effort, an approach to simulate modal wind forces is proposed and applied to the nonlinear equations of motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.