Abstract
The dynamics of serine/threonine protein kinase activity during the growth of the wild-type Streptomyces avermitilis strain and its chloramphenicol-resistant (Cmlr) pleiotropic mutant with an enhanced production of avermectins was studied by measuring the transfer of radiolabeled phosphate from [gamma-32P]ATP to the serine and threonine residues of proteins in cell-free extracts. In both of the strains studied, radiolabeled phosphate was found to incorporate into polypeptides with molecular masses of 32, 35, 41, 68, 75, 79, 83, and 137 kDa; however, the degree and the dynamics of phosphorylation of particular peptides were different in these strains. The differences revealed could not be accounted for by the interference of ATPases or phosphoprotein phosphatases. The data obtained may be interpreted as evidence that Cmlr mutation activates the protein kinase signalling system of S. avermitilis cells in the early stationary growth phase and thus enhances the production of avermectins and leads to some other physiological changes in the mutant strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.