Abstract

We give experimental and numerical evidence for a new dynamical regime in the operation of semiconductor lasers subject to delayed optical feedback occurring for short delay times. This short cavity regime is dominated by a striking dynamical phenomenon: regular pulse packages forming a robust low-frequency state with underlying fast, regular intensity pulsations. We demonstrate that these regular pulse packages correspond to trajectories moving on global orbits comprising several destabilized fixed points within the complicated phase space structure of this delay system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.