Abstract

ABSTRACTWe study the propagation of ultrashort pulses of width around sub-10 femtosecond in an inhomogeneous highly nonlinear single-mode fibre within the framework of a generalized higher-order nonlinear Schrödinger equation with derivative non-Kerr nonlinear terms and spatially inhomogeneous coefficients. Additional effects to the cubic model include the distributed third-order dispersion, self-steepening, self-frequency shift due to stimulated Raman scattering, quintic nonKerr nonlinearity, derivative non-Kerr nonlinear terms, and gain or loss. The exact self-similar brightand dark-solitary-wave solutions of the governing equation are derived via a transformation connected with the constant-coefficient higher-order nonlinear Schrödinger equation with non-Kerr nonlinearity. The constraint relations among the optical fibre parameters for the existence of these self-similar structures are also discussed. Based on these exact solutions, we investigate the dynamical behaviours of self-similar localized pulses in a periodic distributed fibre system for different parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call