Abstract
The dynamics of free-ion production through electron transfer in K(np)/CH3CN collisions are examined through measurements using velocity-selected Rydberg atoms. The data show that Rydberg electron transfer leads to the creation of two groups of dipole-bound CH3CN- ions, one long lived (tau>85 micros), the other short lived (tau<1 micros). The velocity dependences associated with the production of both groups of ions are similar, the ion formation rate decreasing markedly with decreasing Rydberg atom velocity, principally as a consequence of postattachment electrostatic interactions between the product ions. The results are in reasonable accord with the predictions of a Monte Carlo collision model that considers the effect of crossings between the diabatic potential curves for the covalent K(np)/CH3CN system and the K+/CH3CN- ion pair. This model also accounts for the relatively small reaction rate constants, approximately 0.5-1.0 x 1.0(-8) cm(3) s(-1), associated with the formation of long-lived CH3CN- ions. No velocity dependence in the lifetime of the CH3CN- ions is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.