Abstract

AbstractRunoff is the key factor to understand the land degradation causing high risk of soil erosion and can reduce the water available for human societies and ecosystems. The dynamics of runoff and suspended sediment transport are not completely understood. In this study, we examined the trends, breaking point and regime changes for the runoff and sediment load at different temporal scales using 50 years of continuous observational data from a highly erodible sub‐catchment with an area of 7,325 km2 in the Beiluo River basin on the Loess Plateau, China. At the annual scale, the runoff and sediment load declined significantly (p < 0·05) with decreasing rates of −0·23 mm y−1 and −164·9 Mg km−2 y−1, respectively. Abrupt changes in the runoff and sediment load series were detected between 1979 and 1999; thus, the data were divided into intervals of 1960–1979, 1980–1999 and 2000–2009. The flow duration curve analysis indicated increasing low‐flow values and decreasing daily runoff and sediment discharge peaks, which suggested that soil and water conservation measures reduced the volume of runoff and the sediment load. This led to a more uniform runoff regime. At the flood event scale, we investigated the relationship between runoff and the suspended sediment load based on 123 flood events, which showed clearly that the magnitude and frequency of hyper‐concentrated sediment flows decreased in 2000–2009 compared with 1960–1999. The annual erosive rainfall exhibited non‐significant changes throughout the entire study period. We conclude that soil and water conservation measures (e.g. afforestation, grassing, terraces and check dams) have played major roles in the changes in runoff and the sediment load in the Beiluo River catchment. Copyright © 2015 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.