Abstract

Paramagnetic particles, when subjected to external unidirectional rotating magnetic fields, form chains which rotate along with the magnetic field. In this paper three simulation methods, particle dynamics (PD), Stokesian dynamics (SD) and lattice Boltzmann (LB) methods, are used to study the dynamics of these rotating chains. SD simulations with two different levels of approximations—additivity of forces (AF) and additivity of velocities (AV)—for hydrodynamic interactions have been carried out. The effect of hydrodynamic interactions between paramagnetic particles under the effect of a rotating magnetic field is analyzed by comparing the LB and SD simulations, both of which include hydrodynamic interactions, with PD simulations in which hydrodynamic interactions are neglected. It was determined that for macroscopically observable properties like average chain length as a function of Mason number, reasonable agreement is found between all the three methods. For microscopic properties like the force distribution on each particle along the chain, inclusion of hydrodynamic interaction becomes important to understand the underlying physics of chain formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.