Abstract

We have used a crossed electron molecular beam setup to investigate the behavior of the anticancer drug temozolomide (TMZ) upon the attachment of low-energy electrons (0–14 eV) in the gas phase. Upon a single electron attachment, eight anionic fragments are observed, the most intense being an anion with mass of 109 u at a resonance energy of 0 eV. Quantum chemical calculations suggest that this ion is generated after the tetrazine ring opens along a N–N bond and its fragments leave the molecule, forming an imidazole-carboxamide species. This ion represents the most abundant fragment, with further fragments following from its dissociation. The tetrazine ring cleavage reaction forming N2 is thus the driving force of TMZ reactivity upon electron attachment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.