Abstract

Here, we use magnetically driven self-assembled achiral swimmers made of two to four superparamagnetic micro-particles to provide insight into how swimming kinematics develop in complex, shear-thinning fluids. Two model shear-thinning polymer fluids are explored, where measurements of swimming dynamics reveal contrasting propulsion kinematics in shear-thinning fluids vs a Newtonian fluid. When comparing the velocity of achiral swimmers in polymer fluids to their dynamics in water, we observe kinematics dependent on (1) no shear-thinning, (2) shear-thinning with negligible elasticity, and (3) shear-thinning with elasticity. At the step-out frequency, the fluidic environment's viscoelastic properties allow swimmers to propel faster than their Newtonian swimming speed, although their swimming gait remains similar. Micro-particle image velocimetry is also implemented to provide insight into how shear-thinning viscosity fluids with elasticity can modify the flow fields of the self-assembled magnetic swimmers. Our findings reveal that flow asymmetry can be created for symmetric swimmers through either the confinement effect or the Weissenberg effect. For pseudo-chiral swimmers in shear-thinning fluids, only three bead swimmers show swimming enhancement, while four bead swimmers always have a decreased step-out frequency velocity compared to their dynamics in water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call