Abstract

Visual focal attention is both fast and spatially localized, making it challenging to investigate using human neuroimaging paradigms. Here, we used a new multivariate multifocal mapping method with magnetoencephalography (MEG) to study how focal attention in visual space changes stimulus-evoked responses across the visual field. The observer's task was to detect a color change in the target location, or at the central fixation. Simultaneously, 24 regions in visual space were stimulated in parallel using an orthogonal, multifocal mapping stimulus sequence. First, we used univariate analysis to estimate stimulus-evoked responses in each channel. Then we applied multivariate pattern analysis to look for attentional effects on the responses. We found that attention to a target location causes two spatially and temporally separate effects. Initially, attentional modulation is brief, observed at around 60–130 ms post stimulus, and modulates responses not only at the target location but also in adjacent regions. A later modulation was observed from around 200 ms, which was specific to the location of the attentional target. The results support the idea that focal attention employs several processing stages and suggest that early attentional modulation is less spatially specific than late.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call