Abstract
Abstract. This paper analyses simple models for "production-utilisation" systems, reduced to two state variables for producers and utilisers, respectively. Two modes are distinguished: in "harvester" systems the resource utilisation involves active seeking on the part of the utilisers, while in "processor" systems, utilisers function as passive material processors. An idealised model of biosphere-human interactions provides an example of a harvester system, and a model of plant and soil carbon dynamics exemplifies a processor system. The biosphere-human interaction model exhibits a number of features in accord with experience, including a tendency towards oscillatory behaviour which in some circumstances results in limit cycles. The plant-soil carbon model is used to study the effect of random forcing of production (for example by weather and climate fluctuations), showing that with appropriate parameter choices the model can flip between active-biosphere and dormant-biosphere equilibria under the influence of random forcing. This externally-driven transition between locally stable states is fundamentally different from Lorenzian chaos. A behavioural difference between two-component processor and harvester systems is that harvester systems have a capacity for oscillatory behaviour while processor systems do not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.