Abstract
Better understanding of photosynthetic efficiency under fluctuating light requires a specific approach to characterize the dynamics of energy dissipation in photosystem II. In this study, we characterized the interaction between the regulated YNPQ and non-regulated YNO energy dissipation in outdoor- and indoor-grown sunflower leaves exposed to repetitive cycles of sinusoidal lights of five amplitudes (200, 400, 600, 800, 1000µmolm-2s-1) and periods (20, 40, 60, 90, 120s). The different light cycles induced various patterns of ChlF emission, from which were calculated the complementary quantum yields of photochemical energy conversion YII, light-regulated YNPQ, and non-regulated YNO non-photochemical energy dissipation. During the light cycles, YNO varied in complex but small patterns relative to those of YNPQ, whose variations were mostly mirrored by changes in YII. The YNO patterns could be decomposed by fast Fourier transform into a main (MH) and several upper harmonics (UH). Concerning YNPQ dynamics, they were described by sinusoidal regressions with two components, one constant during the light cycles but increasing with the average light intensity (YNPQc), and one variable (YNPQv). Formation and relaxation of YNPQv followed the intensity of the sinusoidal lights, with lags ranging from 5 to 13s. These lags decreased with the amplitude of the incident light, and were shorter by 37% in outdoor than indoor leaves. YNPQv and UHs responses to the growth conditions, amplitudes, and the periods of the sinusoidal light were closely correlated (r = 0.939), whereas MH and YNPQc varied similarly (r = 0.803). The analysis of ChlF induced by sinusoidal lights may be a useful tool to better understand the dynamics of energy dissipation in PSII under fluctuating lights.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.