Abstract

Heterarchical manufacturing systems with highly-distributed, real-time control of arrival times of parts exhibit high levels of robustness and adaptability to changes in machine availability, part mix, processing times, and due dates. However, distribution of control and queuing in these systems makes analysis and modeling difficult, particularly when parts proceed through multiple processing steps and these processing steps can be performed by more than one machine. In this paper, a general approach is presented for modeling these systems. Examples of multiple-machine and multiple-processing-step systems are presented, illustrating their behavior and closed-form solutions obtained of discontinuous differential equations that represent their dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.