Abstract

Time- and space-resolved optical emission spectroscopy and fast imaging were used for the investigation of the plasma dynamics of high-power impulse magnetron sputtering discharges. 200 μs pulses with a 50 Hz repetition frequency were applied to a Cr target in Ar, N2, and N2/Ar mixtures and in a pressure range from 0.7 to 2.66 Pa. The power density peaked at 2.2–6 kW cm−2. Evidence of dominating self-sputtering was found for all investigated conditions. Up to four different discharge phases within each pulse were identified: (i) the ignition phase, (ii) the high-current metal-dominated phase, (iii) the transient phase, and (iv) the low-current gas-dominated phase. The emission of working gas excited by fast electrons penetrating the space in-between the electrodes during the ignition phase spread far outwards from the target at a speed of 24 km s−1 in 1.3 Pa of Ar and at 7.5 km s−1 in 1.3 Pa of N2. The dense metal plasma created next to the target propagated in the reactor at a speed ranging from 0.7 to 3.5 km s−1, depending on the working gas composition and the pressure. In fact, it increased with higher N2 concentration and lower pressure. The form of the propagating plasma wave changed from a hemispherical shape in Ar, to a droplike shape extending far from the target in N2. An important N2 emission rise in the latter case was detected during the transition at the end of the metal-dominated phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.