Abstract

This paper presents quite general bidimensional gas-dynamic equations--derived from kinetic theory-which include the fourth cumulant kappa(r,t) as a dynamic field. The dynamics describes a low-density system of inelastic hard spheres (disks) with normal restitution coefficient r. Two illustrative examples are given and the role of kappa in them is discussed. Our general gas-dynamic equations would deal with 9 hydrodynamic fields (which corresponds to 14 in three-dimension). These fields are the standard hydrodynamic fields plus the components p(ij) of the traceless part of the pressure tensor, the energy flux vector Q and the fourth cumulant kappa. The present formulation requires no constitutive equations. The two examples are: the well-known homogeneous cooling state and a system, with and without gravity, steadily heated by two parallel walls. In the first case, the dynamics yield a description of the homogeneous cooling state consistent with known results adding extra details mainly about the transient time behavior. The steadily heated system kept in a static state gives rise to quite simple but nontrivial equations. In the case with gravity, it is shown that when kappa is included as a dynamic field, the formalism leads to a non-Fourier law already to first order in dissipation. Setting gravity g=0 a perturbative solution is shown and favorably compared with observations obtained from molecular dynamics (MD). In both cases, with and without gravity, kappa is not homogeneous. An analytic extension suggests a divergent situation for a small negative value of q, which originates in the unavoidable extension of the formalism to exothermic collisions associated with a restitution coefficient larger than one. This divergent behavior is observed in MD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call