Abstract

Rapid depressurization is a fluid phenomenon that occurs in many industrial and natural applications. Its behaviour is often complicated by the formation, propagation and interaction of waves. In this work, we perform computer simulations of the rapid depressurization of a gas–solid mixture in a shock tube. Our problem set-up mimics previously performed experiments, which have been historically used as a laboratory surrogate for volcanic eruptions. The simulations are carried out with a discontinuous Galerkin compressible fluid solver with four-way coupled Lagrangian particle tracking capabilities. The results give an unprecedented look into the complex multiphase physics at work in this problem. Different regimes have been characterized in a regime map that highlights the key observations. While the mean flow behaviour is in good agreement with experiments, the simulations show unexpected accelerations of the particle front as it expands. Additionally, a new lifting mechanism for gas bubble (void) growth inside the gas–solid mixture is detailed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call