Abstract

We observe unique dynamics of Raman soliton during supercontinuum process when an input pulse experiences initially normal group-velocity dispersion with a negative dispersion slope. In this situation, the blue components of the spectrum form a Raman soliton that moves faster than the input pulse and eventually decelerates because of Raman-induced frequency downshifting. In the time domain, the soliton trajectory bends and becomes vertical when the Raman shift ceases to occur as the spectrum of Raman soliton approaches the zero dispersion point. Parts of the red components of the pulse spectrum are captured by the Raman soliton through cross-phase modulation and they travel with it. The influence of soliton order, input chirp and dispersion slope on the dynamics of Raman soliton is discussed thoroughly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call