Abstract

To understand the mutations and genetic rearrangements that allow rabies virus infections of new hosts and adaptation in nature, the quasispecies structure of the nucleoprotein and glycoprotein genes as well as two noncoding sequences of a rabies virus genome were determined. Gene sequences were obtained from the brain and from the salivary glands of the original host, a naturally infected European fox, and after serial passages in mice, dogs, cats and cell culture. A relative genetic stasis of the consensus sequences confirmed previous results about the stability of rabies virus. At the quasispecies level, the mutation frequency varies, in the following order: glycoprotein region (21.9 x 10(-4) mutations per bp), noncoding sequence nucleoprotein-phosphoprotein region (7.2-7.9 x 10(-4) mutations per bp) and nucleoprotein gene region (2.9-3.7 x 10(-4) mutations per bp). These frequencies varied according to the number, type of heterologous passages and the genomic region considered. The shape of the quasispecies structure was dramatically modified by passages in mice, in which the mutation frequencies increased by 12-31 x 10(-4) mutations per bp, depending on the region considered. Non-synonymous mutations were preponderant particularly in the glycoprotein gene, stressing the importance of positive selection in the maintenance and fixation of substitutions. Two mechanisms of genomic evolution of the rabies virus quasispecies, while adapting to environmental changes, have been identified: a limited accumulation of mutations with no replacement of the original master sequence and a less frequent but rapid selective overgrowth of favoured variants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call