Abstract

To gain a better understanding of pulsed laser ablation (PLA) processes in high-density fluids, including gases, liquids, and supercritical fluids (SCFs), we have investigated the PLA dynamics in high-density carbon dioxide (CO2) using a time-resolved shadowgraph (SG) observation method. The SG images revealed that the PLA dynamics can be categorized into two domains that are separated by the gas-liquid coexistence curve and the Widom line, which forms a border between the gaslike and liquidlike domains of an SCF. Furthermore, a cavitation bubble observed in liquid CO2 near the critical point exhibited a particular characteristic: the formation of an inner bubble and an outer shell structure. The results indicate that the thermophysical properties of the reaction field generated by PLA can be dynamically tuned by controlling the solvent temperature and pressure, particularly near the critical point.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call