Abstract

An investigation was carried out of the interactions between water and three globular proteins: Candida antarctica Lipase B (CaLB), Bovine Serum Albumin (BSA), and Lysozyme (Lys). Measurements were performed on hydrated proteins and protein solutions using dielectric relaxation spectroscopy over a wide range of frequency (10-2−109 Hz) and temperature (−100 to +80 °C). Three dielectric dispersions were observed in hydrated proteins, and an explanation of their molecular origin was offered in terms of the three regions in globular proteins where the absorbed water is located. Those three processes evolve gradually into an overlapping broad dispersion with increasing water content and temperature; this finding was common to hydrated proteins and aqueous solutions alike. Dielectric modulus formalism was employed to compare the dynamics of proteins in aqueous and nonaqueous solutions in the temperature range from 20 to 80 °C. Dimethyl sulfoxide (DMSO) was the nonaqueous solvent of choice because of its abilit...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call