Abstract

An important task in the analysis of multiagent systems is to understand how groups of selfish players can form coalitions, i.e., work together in teams. In this paper, we study the dynamics of coalition formation under bounded rationality. We consider settings whereby each team’s profit is given by a submodular function and propose three profit-sharing schemes, each of which is based on the concept of marginal utility. The agents are assumed to be myopic, i.e., they keep changing teams as long as they can increase their payoff by doing so. We study the properties (such as closeness to Nash equilibrium or total profit) of the states that result after a polynomial number of such moves, and prove bounds on the price of anarchy and the price of stability of the corresponding games.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.