Abstract
AbstractWe have performed a survey of N-body simulations to explore the dynamics of primordial binaries in multiple-population globular clusters. We show that, as a consequence of the initial differences between the spatial distribution of first-generation (FG) and second-generation (SG) stars, SG binaries are disrupted more efficiently than FG binaries. The effects of dynamical evolution on the surviving binaries produces a difference between the SG and the FG binary binding energy distribution with the SG population characterized by a larger fraction of high binding energy (more bound) binaries. We also explore the evolution of the radial variation of the SG-to-FG binary number ratio and find that although the global binary fraction decreases more rapidly for the SG population, the local binary fraction measured in the cluster inner regions may still be dominated by SG binaries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the International Astronomical Union
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.