Abstract
The stabilization and dynamics of lean ( φ = 0.5 ) premixed hydrogen/air atmospheric-pressure flames in planar microchannels of prescribed wall temperature are investigated with respect to the inflow velocity and channel height (0.3 to 1.0 mm) using direct numerical simulation with detailed chemistry and transport. Rich dynamics starting from periodic ignition and extinction of the flame and further transitioning to symmetric V-shaped flames, asymmetric flames, oscillating and pulsating flames, and finally again to asymmetric flames are observed as the inlet velocity is increased. The richest behavior is observed for the 1.0-mm-height channel. For narrower channels, some of the dynamics are suppressed. The asymmetric flames, in particular, vanish for channel heights roughly less than twice the laminar flame thickness. Stability maps delineating the regions of the different flame types in the inlet velocity/channel height parameter space are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.