Abstract
The visual system is thought to represent the direction of moving objects in the relative activity of large populations of cortical neurons that are broadly tuned to the direction of stimulus motion, but how changes in the direction of a moving stimulus are represented in the population response remains poorly understood. Here we take advantage of the orderly mapping of direction selectivity in ferret primary visual cortex (V1) to explore how abrupt changes in the direction of a moving stimulus are encoded in population activity using voltage-sensitive dye imaging. For stimuli moving in a constant direction, the peak of the V1 population response accurately represented the direction of stimulus motion, but following abrupt changes in motion direction, the peak transiently departed from the direction of stimulus motion in a fashion that varied with the direction offset angle and was well predicted from the response to the component directions. We conclude that cortical dynamics and population coding mechanisms combine to place constraints on the accuracy with which abrupt changes in direction of motion can be represented by cortical circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.