Abstract

A quantitative understanding and prediction of the dynamics of entangled polymer melts is a long-standing problem. In this work we present results about the dynamical and rheological properties of atactic polystyrene melts, obtained from a hierarchical approach that combines atomistic and coarse-grained dynamic simulations of unentangled and entangled systems. By comparing short chain atomistic and coarse-grained simulations, the time mapping constant is determined. Self-diffusion coefficients, after correcting for the chain end free volume effect, show a transition from Rouse to reptation-like behavior. In addition, the entanglement molecular weight is calculated through a primitive path analysis. All properties are compared to experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.