Abstract
We report novel theoretical results obtained from combining the method of largest Lyapunov exponent (LLE) with the spin-flip model (SFM), including noise, to model a vertical-cavity surface emitting laser (VCSEL) subject to polarized optical injection. The LLE is applied to the numerical solutions in order to automatically calculate stability maps that characterize the dynamics. The SFM has been extended and generalized to allow for optical injection of arbitrary polarization. Measurements on a 1550-nm VCSEL have been used to estimate the values of key parameters for use in the model and with these we demonstrate excellent agreement between theory and experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.