Abstract

The evolution of initially balanced rotating disks of stars is investigated with a computer model for isolated disks of stars. An isolated, initially cold balanced disk is found to be violently unstable. Adding a sufficient amount of velocity dispersion will stabilize all small-scale disturbances. However, the disks are still unstable against slowly growing long wave-length modes and after about two rotations most disks tend to assume a bar-shaped structure. It is found that the final mass distribution over most of the disk can be closely approximated by an exponential variation, irrespective of the initial mass distribution. The gravitational two-stream instability is investigated by means of a modified computer model for infinite doubly periodic stellar systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call