Abstract
Dynamics of particles advected by fast rotating incompressible turbulent fluid flow is studied. Fast rotation and particle inertia imply the divergent particle velocity field and result in both intermittency in spatial distribution of particles and formation of the large-scale inhomogeneous structures. A nonzero mean helicity of fluid flow causes an additional mean nondiffusive turbulent flux of inertial particles. Intermittency in the systems with and without external pumping is studied. Fast rotation causes anomalous scaling already in the second moment of inertial particle number density and may result in excitation of a small-scale instability of inertial particle distribution, which leads to the formation of small-scale particle clusters. We discuss the relevance of our results for atmospheric, astrophysical, and industrial turbulent rotating flows. [S0031-9007(98)07241-X]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.