Abstract

AbstractWe develop a dynamic model for suspensions of negatively buoyant particles on an incline. Our model includes settling due to gravity and resuspension of particles by shear-induced migration. We consider the case where the particles settle onto the solid substrate and two distinct fronts form: a faster liquid and a slower particle front. The resulting transport equations for the liquid and the particles are of hyperbolic type and we study the dilute limit for which we compute exact solutions. We also carry out systematic laboratory experiments, focusing on the motion of the two fronts. We show that the dynamic model predictions for small to moderate values of the particle volume fraction and the inclination angle of the solid substrate agree well with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.