Abstract

Three experiments were conducted to evaluate ovarian follicular dynamics and functional activity during pregnancy in cattle. In 11 pregnant Charolais cows of Experiment I, size of largest follicle, number of follicles and accumulated follicle size were reduced by day 27 of pregnancy on the ovary bearing the corpus luteum (CL) but not on the non-CL bearing ovary. In experiment II, local attenuation of ovarian follicular development on the CL bearing ovary of seven pregnant heifers was evident compared to the contralateral ovary without the CL. However, in four hysterectomized heifers, follicular development was sustained on both the CL- and non-CL bearing ovaries when CL maintenance was achieved without presence of the uterus or conceptus. In Experiment III, steroidogenic characteristics of the largest and second largest follicles at 17 d postestrus were evaluated for seven pregnant and six cyclic cattle. Follicle by physiological status interactions were detected for both aromatase activity of the follicle and follicular fluid concentrations of estradiol and progesterone. In cyclic cows, the largest follicle had appreciably more aromatase activity than did the second largest follicle; whereas, aromatase activity of the largest follicle from pregnant cows was less than that of cyclic cows. However, in pregnant cows the second largest follicle became the estrogen-active follicle, and this follicle occurred with a higher frequency on the ovary contralateral to the CL-bearing ovary. These changes in aromatase activity were reflected by parallel changes in estrogen concentrations of follicular fluid. The higher progesterone concentration in follicular fluid of the largest follicle in pregnant cows provided further confirmation of their atretic status. In conclusion, during early pregnancy the conceptus and/or uterus ipsilateral to the conceptus appear to secrete compounds which alter local follicular steroidogenic activity and attenuate subsequent follicular growth between 17 to 34 d of pregnancy on the CL-bearing ovary. This local mechanism acting within the ovary may contribute to the antiluteolytic effects of early pregnancy in cattle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call