Abstract

Recently, oscillating high-speed slab jets, or liquid sheets, have been proposed for shielding the first walls of inertial fusion energy (IFE) reactor chambers from damaging X-rays, neutrons and ions. The near-field dynamics of obliquely oscillating turbulent liquid sheets were investigated in scaled experiments. Results are presented for sheets at Reynolds numbers up to 37000 oscillated along various directions at frequencies from 0 to 11 Hz and amplitudes up to half the nozzle thickness (0.5δ). Data on maximum trajectories of oscillating sheets and growth rates of stationary sheets are presented for distances up to 90δ downstream of the nozzle exit. A model for predicting the maximum trajectory is presented. The bulk of the experimental data are in reasonable agreement with this model. These results can be used to provide design guidelines for thick liquid protection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.