Abstract

In this manuscript, we discuss the dynamical behavior of Chen-Lee-Liu (CLL) equation in birefringent fibers which is modeled by two-component nonlinear Schrodinger equation (NLSE) without four-wave mixing effect. In optical fibers and other wave-guide mediums this system models the propagation of soliton flow using group velocity dispersion (GVD) and self-steeping coefficients. In the realms of maritime transport, motion, and energy, the dynamics of deep-sea waves is one of oceanography’s greatest challenges. A mathematical model of the dynamics of solitary waves in the deep ocean under a two-layer stratification yields the NLSE, and resultantly, the interaction between the two can be described by a coupled NLSE. Using two recently developed integration tools, namely the generalized exponential rational function method (GERFM) and the new extended direct algebraic method (NEDAM), the various optical pulses in the forms of bright, dark, combined, and complex solitons are extracted. Moreover, the hyperbolic, exponential, and trigonometric function solutions are recovered. In addition, a comparison is made between our results and those that are well-known, and the study concludes that the solutions we’ve reached are novel. By choosing appropriate parameter values for numerical simulation and physical explanations, the significance of the results is demonstrated. The results of this paper can enhance the nonlinear dynamical behavior of a given system and demonstrate the suitability of the methodology employed. This research, in our opinion, will be beneficial to a wide variety of engineering model specialists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.