Abstract

The ovarian cycle ofRana tigrina was analysed by quantifying the developing oocytes (classified into stages on the basis of diameter) and atretic ones at monthly intervals. Stages I to IV represent oocytes in the first growth phase and the remaining ones the vitellogenic or second growth phase. Stages I–III occurred year round but exhibited significant variation in their number. The number of stage II oocytes always dominated the other stages. Recruitment of oocytes to stages IV and V in April marked the initiation of vitellogenic growth in all specimens. Of the 30 to 35% second growth phase oocytes, 25 to 28% reached ovulatory sizes by June. After spawning the ovarian mass declined drastically from 15 to 0.2% of body mass in July. Atresia was maximal (5%) in August. In other months, it was less than 1.5% of the total oocytes. Oogenic episodes occurred in March and July yielding new oocytes. The number of first growth phase oocytes fluctuated from 65 to 95%. The fluctuation was inversely correlated with the second growth phase oocytes indicating a 30 to 35% annual turnover rate of oocytes in the frog. The final egg number/ovarian mass is positively correlated with the snout-vent length as well as body mass of the frogs.R. tigrina produces about 4000 eggs/100g body mass. Further, the mean number of yolky eggs/100 g body mass and the total volume (V) of eggs/frog were highly correlated. Frogs living in captivity produced fewer eggs compared to the wild ones (3594 ± 227 in captivevs 4704 ± 317 in wild frogs). Also, these frogs failed to breed though they showed amplexus with breeding males. Injection of desoxycorticosterone acetate however induced spawning in 4 out of 5 frogs. They released about 3000 eggs each. Captivity seems to mainly impair breeding and to a little extent the vitellogenic growth of oocytes inR. tigrina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call