Abstract

The oviduct and uterus undergo extensive cellular remodelling during the oestrous cycle, requiring finely tuned intercellular communication. Notch is an evolutionarily conserved cell signalling pathway implicated in cell fate decisions in several tissues. In the present study we evaluated the quantitative real-time polymerase chain reaction (real-time qPCR) and expression (immunohistochemistry) patterns of Notch components (Notch1-4, Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged1-2) and effector (hairy/enhancer of split (Hes) 1-2, Hes5 and Notch-Regulated Ankyrin Repeat-Containing Protein (Nrarp)) genes in the mouse oviduct and uterus throughout the oestrous cycle. Notch genes are differentially transcribed and expressed in the mouse oviduct and uterus throughout the oestrous cycle. The correlated transcription levels of Notch components and effector genes, and the nuclear detection of Notch effector proteins, indicate that Notch signalling is active. The correlation between transcription levels of Notch genes and progesterone concentrations, and the association between expression of Notch proteins and progesterone receptor (PR) activation, indicate direct progesterone regulation of Notch signalling. The expression patterns of Notch proteins are spatially and temporally specific, resulting in unique expression combinations of Notch receptor, ligand and effector genes in the oviduct luminal epithelium, uterus luminal and glandular epithelia and uterine stroma throughout the oestrous cycle. Together, the results of the present study imply a regulatory role for Notch signalling in oviduct and uterine cellular remodelling occurring throughout the oestrous cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.