Abstract
A (3 + 1)-dimensional partially nonlocal nonlinear Schrodinger equation with variable coefficients is considered, and two kinds of reduction are presented. Based on these transformations, via Darboux transformation method and Hirota method, nonlocal and localized spatiotemporal soliton solutions are constructed. In the first kind of reduction, variables x and y are mixed in the single formal variable X; thus, we cannot construct completely localized structures in x and y directions. In order to discuss completely localized structures, we consider the second kind of reduction, where variables x and y are independently included in two formal variables X and Y, respectively. Based on two kinds of reduction and the related solutions, nonlocal and localized spatiotemporal soliton structures are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.