Abstract

An analysis is presented for a class of two degree of freedom weakly nonlinear oscillators, with symmetric restoring force. Conditions of one-to-three internal resonance and subharmonic external resonance of the lower vibration mode are assumed to be satisfied simultaneously. As a consequence, the second vibration mode may also be under the action of external primary resonance. Initially, a set of slow-flow equations is derived, governing the amplitudes and phases of approximate long time response of these oscillators, by applying an asymptotic analytical method. Determination of several possible types of steady-state motions is then reduced to solution of sets of algebraic equations. For all these solution types, appropriate stability analysis is also performed. In the second part of the study, this analysis is applied to an example mechanical system. First, a systematic search is performed, revealing effects of system parameters on the existence and stability properties of periodic motions. Frequency-response diagrams are presented and attention is focused on understanding the evolution and interaction of the various solution branches as the external forcing and nonlinearity parameters are varied. Finally, numerical integration of the equations of motion demonstrates that the system exhibits quasiperiodic or chaotic response for some parameter combinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call