Abstract
Understanding the photodynamics of S-nitroso-thiol (RSNO), an effective NO transporter in biological systems, is essential for its photochemical applications. S-nitroso-mercaptoethanol (MceSNO), a simple water-soluble RSNO, facilitates high-level quantum calculations. We investigated the photoexcitation dynamics of MceSNO in an aqueous solution, focusing on NO dissociation, recombination, and linkage isomerization using quantum calculations and femtosecond infrared spectroscopy. Upon excitation at 320 nm, MceSNO rapidly dissociates into NO and MceS radicals. Approximately 31 ± 3% of MceS reacts with unexcited MceSNO molecules, forming MceSSMce and releasing additional NO. The remaining MceS undergoes geminate recombination with NO, forming either MceSNO (41 ± 4%) or MceSON (28 ± 3%), the latter being a sulfur-ON linkage isomer observed for the first time in a room-temperature solution. MceSON isomerizes back to MceSNO in 470 ± 30 ps. The formation mechanism of MceSON was verified through a potential energy surface constructed at the CASPT2D(16,11)/cc-pVTZ level. The isomerization barrier was determined to be 3.3 ± 1.2 kcal/mol in water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.