Abstract

The dynamics of nitric oxide (NO) and peroxynitrite concentration changes during brain ischemia/reperfusion are poorly understood. In this paper, a NO-selective sensor was used to measure NO concentration changes in the rat brain hippocampus during global brain ischemia/reperfusion. Four-vessel occlusion model of transient global brain ischemia was used. Global cerebral ischemia was induced by occluding both common carotid arteries with artery nips (for 20 min) and reperfusion was induced by loosening the artery nips. Results showed that the changes of NO concentration during global brain ischemia/reperfusion could be divided into different stages. Together with the effects of O2 tension changes and NO synthase (NOS) on nitric oxide levels, we determined five stages in the NO concentration profile: (1) acute O2-limited decrease stage; (2) O2-limited steady stage; (3) neuronal NOS activation stage; (4) acute O2-recovery elevation stage; and (5) O2-recovery steady stage. In addition, a chemical reaction network model was constructed to simulate the dynamics of peroxynitrite during the reperfusion stage, and the effects of a change in the NO formation rate on the dynamics of peroxynitrite were investigated specifically. Results show the rate of NO formation has a great influence on peroxynitrite dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.