Abstract
We investigate the dynamics of fractals and other networks in a viscoelastic and active environment. The viscoelastic dynamics is modeled based on the generalized Langevin equation, where the activity is introduced to it by means of the exponentially correlated noise. The intramolecular interactions are taken into account by the bead-spring picture. The microscopic connectivity (studied in the form of Vicsek fractals, of dual Sierpiński gaskets, of NTD trees, and of a family of deterministic small-world networks) reveals itself in the multiscale monomeric dynamics, which shows vastly different behaviors in the active and passive baths. In particular, the dynamics under active forces leads to a swelling that is characterized through power laws which are not present in the passive case. In all cases, the dynamics reflects the broad scaling behavior of the density of states and not necessarily the maximal relaxation time of the structures in a passive bath, as it is exemplified on the NTD trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.