Abstract

Tin with its low melting point and vapor pressure is a good model material to investigate laser ablation mechanisms under various ambient conditions. Here we measured the nanosecond-laser-induced damage thresholds of tin in vacuum, air, and water. The threshold fluence is found to be ~ 0.1 J/cm2 regardless of the environment unlike more refractory metals when threshold values in water are considerably higher than those in air. Analysis of the morphology and chemical composition of the irradiated surface as well as numerical simulations of tin laser heating demonstrate that the observed surface modification is due to melting but not oxidation. For the case of water environment, the conductive heat transfer to water is found to play only a minor role in tin heating and melting. The simulations show also that the formation of a water vapor layer near the tin surface occurs at a considerably higher fluence, above 0.15 J/cm2, and thus the surface damage is not affected by scattering of the incident laser light by the vapor–liquid interface, typical for more refractory metals. Peculiarities of laser ablation of low-melt materials in liquids and nanoparticle formation are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.