Abstract

As an alloy surface evolves under capillary forces, differing mobilities of the individual components can lead to kinetic alloy decomposition at the surface. In this paper, we address the relaxation of nanoscale sinusoidal ripples on alloy surfaces by considering the effects of both surface and bulk diffusion. In the absence of bulk diffusion, we derive exact analytical expressions for relaxation rates and identify two natural time scales that govern the relaxation dynamics. Bulk diffusion is shown to reduce kinetic surface segregation and enhance relaxation rates, owing to intermixing near the surface. Our results provide a quantitative framework for the interpretation of relaxation experiments on alloy surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call