Abstract
In this paper we use the GENERIC (general equation for nonequilibrium reversible-irreversible coupling) nonequilibrium thermodynamics framework to derive constitutive equations for the surface extra stress tensor of an interface stabilized by a two-dimensional suspension of anisotropic colloidal particles. The dependence of the surface stress tensor on the microstructure of the interface is incorporated through a dependence on a single tensorial structural variable, characterizing the average orientation of the particles. The constitutive equation for the stress tensor is combined with a time-evolution equation describing the changes in the orientation tensor as a result of the applied deformation field. We examine the predictions of the model in in-plane steady shear flow, in-plane oscillatory shear flow, and oscillatory dilatational flow. The model is able to predict the experimentally observed shear thinning behavior in surface shear flow, and also the experimentally observed emergence of even harmonics in the frequency spectrum of the surface stress in oscillatory dilatational flow. Our results show that the highly nonlinear stress-deformation behavior of interfaces with a complex microstructure can be modeled well using simple structural models like the one presented here.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.